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Absrrarr. 2-E~hatwlamlnr and (2Rt2-aminopropanol were wnvrrrrd hro their N-pyrrole derivcuives, I4 and IS. by 
reaction wilh 2&dimethoxytetrahydrcfuran. The wctoxyacc~l drrivntivrs of Id md IS lvcrr pq.zued and snhnirred 
IO BBrj-promored rearmngemmr. Arc~yloIion of the resultitq (2-nrctc~.r,~~~rtyl)rr~~l-I-yl-2-rthnrml and 2-propattol 
furnished tbr correspondln~ acetates. 

Pyrroles are rarely found in the marine environment and are usually confined to sponges.’ btyozoans,~ 

cyanobacteria and brown algae.-t Recently, two simple, yet novel, 2-acylated pyrroles were isolated in ex- 

tremely small amounts from samples of Gruciluriopsis iemane~&mis. a rexl alga which flourishes in intertidal 

pools on the coast of Oregon, USA, at Cape Petpetua.4 As the extraction procedure entailed treabnult with 

acetic anhydride. it was not known whether the natural products were alcohols (1 and 3) or the corresponding 

acetates (2 and 4). In addition, the configurations of 3 and 4 were equally unknown. It was thercforc desirable 

to procure these scarce substances in tangible quantities and confirm their structures. 
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We now describe a practical synthesis of 2 and 4 which is based on our recently discovered method for 

effecting the intramolecular acylation of certain N-substituted pyrroles.5 Typically, the treatment of the N- 

pyrrole derivative of diethyl L-glutamate (5) with 1.1 equivalents of boron tribromide for 15 minutes brings 

about cyclization to the keto ester 8 in high yield and with total retention of configuration5 (Scheme 1). 

Scheme 1 
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Although the precise mechanism is open to conjecture, the ester group is undoubtedly activated by 

complexation (54) thereby triggering attack by the pyrrole ring at the a position (647) with excision, at 

least formally, of a molecule of ethanol (7-&I). In the meantime, the other ester group remains unaffected. An 

obvious corollary would be the intramolecular detachment of the acyl component of a pcudent acetate sub- 
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stituent. Indeed, exposure of 2-(lH-pyrrol-1-yl)ethyl acetate (9) to boron tribromide gave 2-acetylpyrrol-l-yl- 

Zethanol (10) in high yield6 (Scheme 2). Clearly. the six-membered transition structure proposed above is 

propitious for acyl tmnsfer.7-8 
scheme 2 
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Having thus established the validity of the key synthetic step the appropriately substituted precursors 

needed to be assembled. The condensation of 2-ethanolamine (11) and (ZR)-2-aminopropanol (12) with 2.5 

dimetboxyteuahydrofuran (13) in hot acetic acid provided the N-pyrrole alcohols 14 and IS in yields of 65 

and 69% respectively9 (Scheme 3). Next, esterification of 14 and I5 was effected with acetoxyacetyl chloride 

in the presence of an equivalent of N-ethyldiisopropylamine and H catalytic amount of 4-&methylaminopyri- 

dine (DMAP) in methylene chloride. Reaction was rapid giving high yields of the desired precursors,~~ the 

acetoxyacetates 16 and 17. Gratifyingly, the crucial intr~moleculur acylation step proceeded efficiently. * 1 

Submission of 16 and 17 to boron tribromide (1.1 equivalents) ut 0” to -5W in dichloromethane for 15 min- 

utes furnished exclusively the two acetoxyacetylpyrrole alcohols (I8 and 19). Contrary to expectation. no 

bromination of the newly liberated hydroxyl group occurred, although alcohols. particularly secondary and 

tertiary ones. are usually convertul to the corresponding bromides under these conditions.t2 Finally, aeatment 

of I8 and 19 with acetyl chloride and N-ethyldiisopropylamine and a catalytic amount of DMAP in methylene 

chloride afforded the target molecules 2 and 4 in yields of 94 and 70% respectively. 

Scheme 3 
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These synthetic s*ples13.14 exhibited lH- and ‘SC-NMR spectra which were entirely compatibtt with 

those reporte& for the naturally occurring products. However, the value of !a)#’ -47.2” (c 0.29. MeOH) 

recorded for 4 of natuml origin is considerably lower than that observed for the synthetic materi& This dis- 

crepancy is probably due to partial mcemization which occurred in the methanolic solution during measure- 

ment or. more likely, in the aqueous methanol used as eluent for the final stage of chromatogmphic puritica- 

tion. Nevertheless, the negative rotations seen in both ca.ses indicate that the natural sample 4 must have the R 

configuration. 

In conclusion. the pynr>le acetates 2 and 4 were obtained in just four steps from the readily available 

amino alcohols in overall yields of 38 and 30% respectively. At the sume time, a new procedurr of BBrx-pm- 

moted intramolecular and regiosclective acylation of pyrroles has been developed which should find further 

application. 
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