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Abstract. 2-Ethanolamine and (2R)-2-aminopropanol were converted into their N-pyrrole derivatives, 14 and 15, by
reaction with 2 5-dimethoxytetrahydrofuran. The acetoxyacetyl derivatives of 14 and 15 were prepared and submitted
to BBr3-pr ed rearrangement. Acetyl of the resulting (2-acctoxyacctyl)pyrrol-1-yl-2-ethanol and 2-propanol
furnished the corresponding acetates.

Pyrroles are rarely found in the marine environment and are usually confined to sponges,! bryozoans,2
cyanobacteria and brown algae.} Recently, two simple, yet novel, 2-acylated pyrroles were isolated in ex-
tremely small amounts from samples of Gracilariopsis lemaneiformis, a red alga which flourishes in intertidal
pools on the coast of Oregon, USA, at Cape Perpetua.? As the extraction procedure entailed treatment with
acetic anhydride, it was not known whether the natural products were alcohols (1 and 3) or the corresponding
acetates (2 and 4). In addition, the configurations of 3 and 4 werc equally unknown. It was therefore desirable
to procure these scarce substances in tangible quantities and confinm their structures.
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We now describe a practical synthesis of 2 and 4 which is based on our recently discovered method for
effecting the intramolecular acylation of certain N-substituted pyrroles.’ Typically, the treatment of the N-
pyrrole derivative of diethyl L-glutamate (§) with 1.1 equivalents of boron tribromide for 15 minutes brings
about cyclization to the keto ester 8 in high yield and with total retention of configuration3 (Scheme 1).
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Although the precise mechanism is open to conjecture, thc ester group is undoubtedly activated by
complexation (5—56) thereby triggering attack by the pyrrole ring at the a position (6-7) with excision, at
least formally, of a molecule of cthanol (7-8). In the meantime, the other ester group remains unaffected. An
obvious corollary would be the intramolecular detachment of the acyl component of a pendent acetate sub-
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stituent. Indeed, exposure of 2-(1H-pyrrol-1-yl)ethyl acetate (9) to boron tribromide gave 2-acetylpyrrol-1-yl-
2-ethanol (10) in high yicld® (Scheme 2). Clearly, the six-membered transition structure proposed above is

propitious for acyl transfer.7-8
Scheme 2
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Having thus established the validity of the key synthetic step the appropriately substituted precursors
needed to be assembled. The condensation of 2-ethanolamine (11) and (2R)-2-aminopropanol (12) with 2,5-
dimethoxytetrahydrofuran (13) in hot acetic acid provided the N-pyrrole alcohols 14 and 15 in yields of 65
and 69% respectively? (Scheme 3). Next, esterification of 14 and 15 was effected with acetoxyacetyl chloride
in the presence of an equivalent of N-ethyldiisopropylamine and a catalytic amount of 4-dimethylaminopyri-
dine (DMAP) in methylene chloride. Reaction was rapid giving high yields of the desired precursors,10 the
acctoxyacctates 16 and 17. Gratifyingly, the crucial intramolecular acylation step proceeded efficiently.!!
Submission of 16 and 17 to boron tribromide (1.1 equivalents) at 00 to -5°C in dichloromethane for 15 min-
utes fumnished exclusively the two acetoxyacetylpyrrole alcohols (18 and 19). Contrary to expectation, no
bromination of the newly liberated hydroxyl group occurred, although alcohols, particularly secondary and
tertiary ones, are usually converted to the corresponding bromides under these conditions. !2 Finally, treatment
of 18 and 19 with acetyl chloride and N-ethyldiisopropylamine and a catalytic amount of DMAP in methylene
chloride afforded the target molecules 2 and 4 in yields of 94 and 70% respectively.
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These synthetic samples!3:14 exhibited !H- and 13C-NMR spectra which were entirely compatible with
those reported* for the naturally occurring products. However, the value of [a}p2® -47.2° (¢ 0.29, McOH)
recorded for 4 of natural origin is considerably lower than that observed for the synthetic material. This dis-
crepancy is probably due to partial racemization which occurred in the methanolic solution during measure-
ment or, more likely, in the aqueous methanol used as eluent for the final stage of chromatographic purifica-
tion. Nevertheless, the negative rotations seen in both cases indicate that the natural sample 4 must have the R
configuration.

In conclusion, the pyrrole acetates 2 and 4 were obtained in just four steps from the readily available
amino alcohols in overall yields of 38 and 30% respectively. At the same time, a new procedure of BBr3-pro-
moted intramolecular and regioselective acylation of pyrroles has been developed which should find further
application.
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